简单谈谈python中的Queue与多进程
作者:Kevin_Yang 发布时间:2021-06-13 04:16:45
最近接触一个项目,要在多个虚拟机中运行任务,参考别人之前项目的代码,采用了多进程来处理,于是上网查了查python中的多进程
一、先说说Queue(队列对象)
Queue是python中的标准库,可以直接import 引用,之前学习的时候有听过著名的“先吃先拉”与“后吃先吐”,其实就是这里说的队列,队列的构造的时候可以定义它的容量,别吃撑了,吃多了,就会报错,构造的时候不写或者写个小于1的数则表示无限多
import Queue
q = Queue.Queue(10)
向队列中放值(put)
q.put(‘yang')
q.put(4)
q.put([‘yan','xing'])
在队列中取值get()
默认的队列是先进先出的
>>> q.get()
‘yang'
>>> q.get()
4
>>> q.get()
[‘yan', ‘xing']
当一个队列为空的时候如果再用get取则会堵塞,所以取队列的时候一般是用到
get_nowait()方法,这种方法在向一个空队列取值的时候会抛一个Empty异常
所以更常用的方法是先判断一个队列是否为空,如果不为空则取值
队列中常用的方法
Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.get([block[, timeout]]) 获取队列,timeout等待时间
Queue.get_nowait() 相当Queue.get(False)
非阻塞 Queue.put(item) 写入队列,timeout等待时间
Queue.put_nowait(item) 相当Queue.put(item, False)
二、multiprocessing中使用子进程概念
from multiprocessing import Process
可以通过Process来构造一个子进程
p = Process(target=fun,args=(args))
再通过p.start()来启动子进程
再通过p.join()方法来使得子进程运行结束后再执行父进程
from multiprocessing import Process
import os
# 子进程要执行的代码
def run_proc(name):
print 'Run child process %s (%s)...' % (name, os.getpid())
if __name__=='__main__':
print 'Parent process %s.' % os.getpid()
p = Process(target=run_proc, args=('test',))
print 'Process will start.'
p.start()
p.join()
print 'Process end.'
三、在multiprocessing中使用pool
如果需要多个子进程时可以考虑使用进程池(pool)来管理
from multiprocessing import Pool
from multiprocessing import Pool
import os, time
def long_time_task(name):
print 'Run task %s (%s)...' % (name, os.getpid())
start = time.time()
time.sleep(3)
end = time.time()
print 'Task %s runs %0.2f seconds.' % (name, (end - start))
if __name__=='__main__':
print 'Parent process %s.' % os.getpid()
p = Pool()
for i in range(5):
p.apply_async(long_time_task, args=(i,))
print 'Waiting for all subprocesses done...'
p.close()
p.join()
print 'All subprocesses done.'
pool创建子进程的方法与Process不同,是通过
p.apply_async(func,args=(args))实现,一个池子里能同时运行的任务是取决你电脑的cpu数量,如我的电脑现在是有4个cpu,那会子进程task0,task1,task2,task3可以同时启动,task4则在之前的一个某个进程结束后才开始
上面的程序运行后的结果其实是按照上图中1,2,3分开进行的,先打印1,3秒后打印2,再3秒后打印3
代码中的p.close()是关掉进程池子,是不再向里面添加进程了,对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。
当时也可以是实例pool的时候给它定义一个进程的多少
如果上面的代码中p=Pool(5)那么所有的子进程就可以同时进行
三、多个子进程间的通信
多个子进程间的通信就要采用第一步中说到的Queue,比如有以下的需求,一个子进程向队列中写数据,另外一个进程从队列中取数据,
#coding:gbk
from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def write(q):
for value in ['A', 'B', 'C']:
print 'Put %s to queue...' % value
q.put(value)
time.sleep(random.random())
# 读数据进程执行的代码:
def read(q):
while True:
if not q.empty():
value = q.get(True)
print 'Get %s from queue.' % value
time.sleep(random.random())
else:
break
if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 等待pw结束:
pw.join()
# 启动子进程pr,读取:
pr.start()
pr.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
print '所有数据都写入并且读完'
四、关于上面代码的几个有趣的问题
if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
p = Pool()
pw = p.apply_async(write,args=(q,))
pr = p.apply_async(read,args=(q,))
p.close()
p.join()
print '所有数据都写入并且读完'
如果main函数写成上面的样本,本来我想要的是将会得到一个队列,将其作为参数传入进程池子里的每个子进程,但是却得到
RuntimeError: Queue objects should only be shared between processes through inheritance
的错误,查了下,大意是队列对象不能在父进程与子进程间通信,这个如果想要使用进程池中使用队列则要使用multiprocess的Manager类
if __name__=='__main__':
manager = multiprocessing.Manager()
# 父进程创建Queue,并传给各个子进程:
q = manager.Queue()
p = Pool()
pw = p.apply_async(write,args=(q,))
time.sleep(0.5)
pr = p.apply_async(read,args=(q,))
p.close()
p.join()
print '所有数据都写入并且读完'
这样这个队列对象就可以在父进程与子进程间通信,不用池则不需要Manager,以后再扩展multiprocess中的Manager类吧
关于锁的应用,在不同程序间如果有同时对同一个队列操作的时候,为了避免错误,可以在某个函数操作队列的时候给它加把锁,这样在同一个时间内则只能有一个子进程对队列进行操作,锁也要在manager对象中的锁
#coding:gbk
from multiprocessing import Process,Queue,Pool
import multiprocessing
import os, time, random
# 写数据进程执行的代码:
def write(q,lock):
lock.acquire() #加上锁
for value in ['A', 'B', 'C']:
print 'Put %s to queue...' % value
q.put(value)
lock.release() #释放锁
# 读数据进程执行的代码:
def read(q):
while True:
if not q.empty():
value = q.get(False)
print 'Get %s from queue.' % value
time.sleep(random.random())
else:
break
if __name__=='__main__':
manager = multiprocessing.Manager()
# 父进程创建Queue,并传给各个子进程:
q = manager.Queue()
lock = manager.Lock() #初始化一把锁
p = Pool()
pw = p.apply_async(write,args=(q,lock))
pr = p.apply_async(read,args=(q,))
p.close()
p.join()
print '所有数据都写入并且读完'


猜你喜欢
- 我们讲了requests的用法以及利用requests简单爬取、保存网页的方法,这节课我们主要讲urllib和requests的区别。1、获
- 从某个页面表单中取出信息是ASP编程中常见的问题。但是,遍历通过表单传递的记录会花去多长时间呢?这取决于数据库的大小。简单的GUI界面都可能
- 前几天光耀童鞋喷了一篇《谈网站注册、登录过程》,今天我们在与小爬童鞋梳理购买流程的时候也谈到了这部分内容。其实注册作为一个网站基本功能再普通
- 运算符的优先级和关联性运算符的优先级和关联性: 运算符的优先级和关联性决定了运算符的优先级。运算符优先级这用于具有多个具有不同优先级的运算符
- Python函数的设计规范1、Python函数设计时具备耦合性和聚合性1)、耦合性:(1).尽可能通过参数接受输入,以及通过return产生
- 本文为大家分享了Ubuntu下Anaconda和Pycharm的配置方法,供大家参考,具体内容如下1.对于Ubuntu18.04,一开始会有
- 学了面向对象三大特性继承,多态,封装。今天我们看看面向对象的一些进阶内容,反射和一些类的内置函数。一、isinstance和issubcla
- 题目:汉诺塔给出最优解,如果对汉诺塔的定义有不了解,请翻看数据结构教材。除了最基本的之外,还有一题,给定一个数组,arr=[2,3,1,2,
- 概述我们可以将此归咎于许多原因,但这肯定不仅仅是因为 PHP 生态系统缺乏适当的测试工具。在本文中,我想向您展示一个简单的设置,用于项目的基
- 数据库账号密码加密详解及实例数据库中经常有对数据库账号密码的加密,但是碰到一个问题,在使用UserService对密码进行加密的时候,spr
- Ajax类
- 为了防止某些别有用心的人从外部访问数据库,盗取数据库中的用户姓名、密码、信用卡号等其他重要信息,在我们创建数据库驱动的解决方案时,我们首先需
- 本文介绍了python画图时设置分辨率和画布大小的实现,主要使用plt.figure(),下面就一起来了解一下plt.figure()示例:
- 通过session,我们可以在多次浏览器请求中保持数据, 接下来的部分就是用session来处理用户登录了。 当然,不能仅凭用户的一面之词,
- 前几天有个人退群了。起因很简单,他问了一个问题,没人回答,于是说要退群,后来我看到了,给了个链接,说这个问题已经说过好多遍了,于是他就退了。
- 这些导航菜单来自于Dribbble网站,出自于世界各地的优秀设计师之手,涵盖了各种不同的风格,个个都非常精美。这里我将这些导航菜单展示出来,
- 1、创建表1.1、创建表基本语法CREATE TABLE tablename (column_name_1 column_type_1 co
- 概述对于中小体量的项目而言,联表查询是再常见不过的操作了,尤其是在做报表的时候。然而校对数据的时候,您发现坑了吗?本篇文章就 mysql 常
- 这篇文章主要介绍了Python3如何对urllib和urllib2进行重构,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参
- 问题怎样实现一个按优先级排序的队列? 并且在这个队列上面每次 pop 操作总是返回优先级最高的那个元素解决方案下面的类利用 heapq 模块