python数据可视化Seaborn绘制山脊图
作者:赵卓不凡? 发布时间:2023-12-22 09:04:17
1. 引言
山脊图一般由垂直堆叠的折线图组成,这些折线图中的折线区域间彼此重叠,此外它们还共享相同的x轴.
山脊图经常以一种相对不常见且非常适合吸引大家注意力的紧凑图的形式表现。观察上图,我们给其起名叫Ridge plot是
非常恰当的,因为上述图表看起来确实很像山的脊背.此外,上述图像还有另一个称呼叫做Joy Plots–这主要是因为Joy Division
乐队在如下专辑封面上采用了这种可视化形式.
2. 举个栗子
在介绍完山脊图的由来背景后,现在让我们来举个例子。我们使用以下数据集,主要包含 Netflix
的作品及对应的 IMDB
分数。
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
df = pd.read_csv('./data/film.csv')
languages = ['English', 'Hindi', 'Spanish',
'French', 'Italian', 'Portuguese']
df_filtered = df[df['Language'].isin(languages)]
df_filtered
运行结果如下:
上表中从左往右,依次为ID,电影名称,电影类型,首映日期,电影长度,IMDB评分,以及电影语种.
接下来我们首先使用 Seaborns FacetGrid
库来为每个语言类别的电影创建不同IMDB下的概率密度分布曲线图。实现这个功能很简单,仅需要对数据表中相应名称字段来按值进行分组统计即可。
代码如下:
sns.set_theme(style="white")
g = sns.FacetGrid(df_filtered, row="Language")
g.map_dataframe(sns.kdeplot, x="IMDB Score")
g.set(ylabel="")
结果如下:
上述实现采用的为默认的参数配置,横轴表示IMDB
分数,纵轴表示对应不同语种电影在不同IMDB得分下的概率. 从上述图例中可以看出单个语种电影评分的概率密度分布,但是很难查看不同语种间的对比分布。
接着我们尝试来改进显示效果,我们通过设置FacetGrid
函数中相应的参数来让图表变得更宽更短。
代码如下:
sns.set_theme(style="white")
g = sns.FacetGrid(df_filtered, row="Language", aspect=9, height=1.2)
g.map_dataframe(sns.kdeplot, x="IMDB Score")
g.set(ylabel="")
结果如下:
上述改进虽然可以让数据间的对比变得明显一些,但是这个可视化从视觉效果上看并没有太大的吸引力。
观察上图,我们其实并没有多少人去关注左侧的Y轴信息,我们更关注的是数据的形状.这就意味着我们这里可以删除Y轴.
代码如下:
sns.set_theme(style="white")
g = sns.FacetGrid(df_filtered, row="Language", aspect=9, height=1.2)
g.map_dataframe(sns.kdeplot, x="IMDB Score")
g.set_titles("")
g.set(yticks=[],ylabel="")
g.despine(left=True)
运行结果如下:
3.山脊图
经过我们的优化,上述不同语种电影的IMDB
得分概率密度分布还是不够直观.
接下来我们一步一步来介绍我们的终结法宝–山脊图.
首先,我们需要确保背景是透明的。
sns.set_theme(style="white", rc={"axes.facecolor": (0, 0, 0, 0)})
接着,我们需要填充线条的内部区域。
g.map_dataframe(sns.kdeplot, x="IMDB Score", fill=True, alpha=1)
上述操作后,不同语种间的区域会出现重叠,这时我们还需要区分重叠部分。
我们通过以下代码进行区分:
sns.set_theme(style="white", rc={"axes.facecolor": (0, 0, 0, 0)})
g = sns.FacetGrid(df_filtered, row="Language", aspect=9, height=1.2)
g.map_dataframe(sns.kdeplot, x="IMDB Score", fill=True, alpha=1)
g.map_dataframe(sns.kdeplot, x="IMDB Score", color='black')
g.fig.subplots_adjust(hspace=-.5)
g.set_titles("")
g.set(yticks=[])
g.despine(left=True)
运行结果如下:
到目前位置,我们实现了我们第一版的山脊图,接着我们可以根据需要来自定义扩展它。FacetGrid
函数非常适合创建多个可视化图例,并且 .map 和 .map_dataframe
方法可以让我们与所有子图进行交互。
代码如下:
sns.set_theme(style="white", rc={"axes.facecolor": (0, 0, 0, 0), 'axes.linewidth':2})
palette = sns.color_palette("Set2", 12)
g = sns.FacetGrid(df_filtered, palette=palette, row="Language", hue="Language", aspect=9, height=1.2)
g.map_dataframe(sns.kdeplot, x="IMDB Score", fill=True, alpha=1)
g.map_dataframe(sns.kdeplot, x="IMDB Score", color='black')
def label(x, color, label):
ax = plt.gca()
ax.text(0, .2, label, color='black', fontsize=13,
ha="left", va="center", transform=ax.transAxes)
g.map(label, "Language")
g.fig.subplots_adjust(hspace=-.5)
g.set_titles("")
g.set(yticks=[], xlabel="IMDB Score")
g.despine( left=True)
plt.suptitle('Netflix Originals - IMDB Scores by Language', y=0.98)
运行结果如下:
4.扩展
最后,我们可以使用下面代码来复制Joy Division
专辑封面的可视化效果。
代码如下:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
if __name__ == "__main__":
url = "./data/pulsar.csv"
df = pd.read_csv(url, header=None)
df = df.stack().reset_index()
df.columns = ['idx', 'x', 'y']
sns.set_theme(rc={"axes.facecolor": (0, 0, 0, 0), 'figure.facecolor':'#000000', 'axes.grid':False})
g = sns.FacetGrid(df, row='idx', aspect=50, height=0.4)
# Draw the densities in a few steps
g.map(sns.lineplot, 'x', 'y', clip_on=False, alpha=1, linewidth=1.5)
g.map(plt.fill_between, 'x', 'y', color='#000000')
g.map(sns.lineplot, 'x', 'y', clip_on=False, color='#ffffff', lw=2)
# Set the subplots to overlap
g.fig.subplots_adjust(hspace=-0.95)
g.set_titles("")
g.set(yticks=[], xticks=[], ylabel="", xlabel="")
g.despine(bottom=True, left=True)
plt.savefig('joy.png', facecolor='#000000')
运行结果如下:
5.结论
总的来说,山脊图非常适合关注数据的分布对比。山脊图以吸引人的美学可以引起观众的共鸣,使它们成为向用户介绍数据分布对比分析时的绝佳选择。
来源:https://blog.csdn.net/sgzqc/article/details/121911883


猜你喜欢
- 以下是YUI中不建议用的一些说明: 表达式的问题就在于它的计算频率要比
- 本文实例为大家分享了js轮播图实现代码,供大家参考,具体内容如下思路:1、首先要有个盛放图片的容器,设置为单幅图片的宽高,且overflow
- 目录提问:回答:真实情况:知识点结论:总结提问:mysql的字段,unsigned int(3), 和unsinged int(6), 能存
- 1. 特定版本的python-opencv安装在https://www.lfd.uci.edu/~gohlke/pythonlibs/#op
- 这两天在整理一些文章,但是文件夹中每个文章没有序号会看起来很乱,所以想着能不能用Python写一个小脚本。于是乎,参考了多方资料,简单写了下
- 在进行keras 网络计算时,有时候需要获取输入张量的维度来定义自己的层。但是由于keras是一个封闭的接口。因此在调用由于是张量不能直接用
- 如果你使用过大部分,那么你的ASP功力应该是非常高的了ADO对象(太常用了):ConnectionCommandRecordSetRecor
- 1.按姓氏笔画排序:Select * From TableName Order By CustomerName Collate Chines
- 要在Windows .bat文件中运行PHP脚本,可以使用以下方法:1. 打开记事本或任何文本编辑器。2. 编写.bat文件。例如,以下是一
- 相关代码如下: 1. 创建sequence: 代码如下:CREATE SEQUENCE SEQU_DATA_DATAINFO IN
- 需求分析业务要求,需要一个图片上传控件,需满足多图上传点击预览图片前端压缩支持初始化数据相关功能及资源分析基本功能先到https://www
- 模块:xmllibxmllib 是一个非验证的低级语法分析器。应用程序员使用的 xmllib 可以覆盖 XMLParser 类,并提供处理文
- 学习前言在神经网络学习中slim常用函数与如何训练、保存模型文章里已经讲述了如何使用slim训练出来一个模型,这篇文章将会讲述如何预测。载入
- 从本文开始,本系列将介绍python简单案例并进行代码展示,本文的案例是利用pandas库实现读取csv文件并按照列的从小到大进行排序。前言
- USE master; Go EXEC sp_attach_db @dbname = N'数据库名', @filename1
- jupyter notebook 自定义python解释器jupyter notebook 和虚拟环境的好处就不多废话了jupyter no
- 1、csv简介CSV (Comma Separated Values) ,即逗号分隔值(也称字符分隔值,因为分隔符可以不是逗号),是一种常用
- Selenium 是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE
- 1.变量的赋值操作只是多生成了一个变量,实际上还是指向同一个对象# -*- coding: utf-8 -*-class CPU: &nbs
- 本文实例讲述了Python正则抓取新闻标题和链接的方法。分享给大家供大家参考,具体如下:#-*-coding:utf-8-*-import